Urinary Smad1 is a novel marker to predict later onset of mesangial matrix expansion in diabetic nephropathy.
نویسندگان
چکیده
OBJECTIVE We reported that Smad1 is a key transcriptional factor for mesangial matrix expansion in diabetic nephropathy. In this study, we examined whether urinary Smad1 in an early phase of diabetes can predict later development of glomerulosclerosis in diabetic nephropathy and how an angiotensin II type 1 receptor blocker (ARB) can modulate structural changes and urinary markers. RESEARCH DESIGN AND METHODS Smad1 and albumin in the urine were examined 4 weeks after injection of streptozotocin in 48 rats or 6 weeks of diabetes in db/db mice. Their renal pathology was analyzed after 20 weeks in rats or 12 weeks in mice. Among 48 diabetic rats 7 rats were treated with olmesartan for 20 weeks. RESULTS Urinary Smad1 of diabetic rats at 4 weeks was nicely correlated with mesangial matrix expansion at 24 weeks (r = 0.70, P < 0.001), while albuminuria showed a weaker association (r = 0.31, P = 0.043). Olmesartan treatment significantly ameliorated glomerulosclerosis and dramatically decreased urinary Smad1 (from 3.9 +/- 2.9 to 0.3 +/- 0.3 ng/mg creatinine, P < 0.05). In db/db mice, urinary Smad1 at 6 weeks was also significantly correlated with mesangial expansion at 18 weeks. In contrast, there was no change in urinary Smad1 in control diabetic rats or mice. CONCLUSIONS The increase of urinary Smad1 in the early stages of diabetes is correlated with later development of glomerulosclerosis in two rodent models. These data indicate that urinary Smad1 could be a novel predictor for later onset of morphological changes and can be used to monitor the effect of ARBs in diabetic nephropathy.
منابع مشابه
Bone Morphogenetic Protein 4 and Smad1 Mediate Extracellular Matrix Production in the Development of Diabetic Nephropathy.
Diabetic nephropathy is the leading cause of end-stage renal disease. It is pathologically characterized by the accumulation of extracellular matrix in the mesangium, of which the main component is α1/α2 type IV collagen (Col4a1/a2). Recently, we identified Smad1 as a direct regulator of Col4a1/a2 under diabetic conditions in vitro. Here, we demonstrate that Smad1 plays a key role in diabetic n...
متن کاملEffect of Some Calcium Channel Blockers in Experimentally Induced Diabetic Nephropathy in Rats
Diabetic nephropathy (DNP) is considered a CRD (Chronic Renal Disease); it is a major cause of illness and premature death in people with DM. The present study was designed to illustrate the role of CCBs (amlodipine and diltiazem) in prevention and treatment of DNP in rats. Eighty male albino rats weighing (130-180gm) were used in this study. These animals were subdivided into five equal groups...
متن کاملStereological study of octreotide’s (somatostatin analogue) chronic effects on the prevention of glomerular mesangial expansion in uninephrectomized diabetic rats
Background: Diabetic nephropathy is one of the causes of end stage renal diseases (ESRD). Increase of IGF-1(insulin like growth factor) and GH (growth hormone) in diabetes induce kidney lesions especially Intraglomerular mesangial expansion, glomerular sclerosis and finally nephron dysfunction. In this research, IGF-1 and GH production inhibition by octreotide and sclerosis inhibition assessed ...
متن کاملUrinary Cyclophilin A as a New Marker for Diabetic Nephropathy
Type 2 diabetes mellitus (DM) is the most common single cause of end-stage renal disease. Albuminuria is the most commonly used marker to predict onset of diabetic nephropathy (DN) without enough sensitivity and specificity to detect early DN. This is the first study to identify urinary cyclophilin A (CypA) as a new biomarker for early DN.We recruited DM outpatients and healthy control subjects...
متن کاملHigh glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells.
Persistent high concentration of glucose causes cellular stress and damage in diabetes via derangement of gene expressions. We previously reported high glucose activates hypoxia-inducible factor-1αand downstream gene expression in mesangial cells, leading to an extracellular matrix expansion in the glomeruli. A glucose-responsive transcription factor carbohydrate response element-binding protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 57 6 شماره
صفحات -
تاریخ انتشار 2008